General Information of Drug Transporter (DT)
DT ID DTD0329 Transporter Info
Gene Name SLC38A2
Transporter Name Sodium-coupled neutral amino acid transporter 2
Gene ID
54407
UniProt ID
Q96QD8
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Approved Drug

  Sulindac

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Sulindac increases the expression of SLC38A2 [1]

  Zinc Acetate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Zinc Acetate increases the expression of SLC38A2 [2]

  Raloxifene Hydrochloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Raloxifene Hydrochloride increases the expression of SLC38A2 [3]

  Progesterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Progesterone increases the expression of SLC38A2 [4]

  Estradiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Estradiol increases the expression of SLC38A2 [5]

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Copper Sulfate increases the expression of SLC38A2 [6]

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Valproic Acid inhibits the expression of SLC38A2 [7]

  Zidovudine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Zidovudine inhibits the expression of SLC38A2 [8]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Cyclosporine inhibits the expression of SLC38A2 [9]

  Rifampin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Rifampin inhibits the expression of SLC38A2 [10]

  Cisplatin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Cisplatin increases the expression of SLC38A2 [11]

  Urethane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Urethane increases the expression of SLC38A2 [12]

  Leflunomide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Leflunomide increases the expression of SLC38A2 [13]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Sunitinib increases the expression of SLC38A2 [14]

  Ivermectin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Ivermectin inhibits the expression of SLC38A2 [15]

Drug in Phase 3 Trial

  Arsenic disulfide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Arsenic disulfide increases the expression of SLC38A2 [17]

Drug in Phase 2 Trial

  Motexafin gadolinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Motexafin gadolinium increases the expression of SLC38A2 [2]

  Trichloroethylene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Trichloroethylene increases the expression of SLC38A2 [18]

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Bisphenol A affects the expression of SLC38A2 [27]

Drug in Phase 1 Trial

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Sodium arsenite increases the expression of SLC38A2 [16]

Regulation Mechanism

via enhancement of Cyclic AMP-dependent transcription factor ATF-4 (ATF4) Transcription Factor Info

Cell System

Human kidney human embryonic kidney 293T cells (HEK 293T)

  Quercetin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Quercetin inhibits the expression of SLC38A2 [19]

  Palmitic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Palmitic Acid affects the expression of SLC38A2 [31]

Investigative Drug

  [3H]Alanine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

[3H]Alanine modulates the activity of SLC38A2 [32]

Patented Pharmaceutical Agent

  K-7174

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

K-7174 increases the expression of SLC38A2 [21]

  ICG-001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

ICG-001 increases the expression of SLC38A2 [23]

Natural Product

  Thapsigargin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Thapsigargin increases the expression of SLC38A2 [26]

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Tobacco Smoke Pollution increases the expression of SLC38A2 [30]

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Jinfukang inhibits the expression of SLC38A2 [25]

Acute Toxic Substance

  Formaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Formaldehyde increases the expression of SLC38A2 [20]

  Chloropicrin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Chloropicrin affects the expression of SLC38A2 [24]

  Acrylamide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Acrylamide increases the expression of SLC38A2 [28]

Carcinogen

  Ethyl Methanesulfonate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Ethyl Methanesulfonate increases the expression of SLC38A2 [20]

Health and Environmental Toxicant

  Dichloromethane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Dichloromethane increases the expression of SLC38A2 [18]

  Ethyl benzene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Ethyl benzene increases the expression of SLC38A2 [18]

  Toluene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Toluene increases the expression of SLC38A2 [18]

  tris(1,3-dichloro-2-propyl)phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

tris(1,3-dichloro-2-propyl)phosphate increases the expression of SLC38A2 [22]

  Perfluorooctane sulfonic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Perfluorooctane sulfonic acid inhibits the expression of SLC38A2 [29]
References
1 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
2 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
3 Raloxifene-induced myeloma cell apoptosis: a study of nuclear factor-kappaB inhibition and gene expression signature. Mol Pharmacol. 2006 May;69(5):1615-23.
4 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
5 Transcriptional responses to estrogen and progesterone in mammary gland identify networks regulating p53 activity. Endocrinology. 2008 Oct;149(10):4809-20.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
8 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23.
9 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
10 Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol. 2016 Apr 26;7:111.
11 Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights. 2016 Aug 24;11:113-21.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
15 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975.
16 Functional RNA interference (RNAi) screen identifies system A neutral amino acid transporter 2 (SNAT2) as a mediator of arsenic-induced endoplasmic reticulum stress. J Biol Chem. 2012 Feb 17;287(8):6025-34.; 2012 Feb 17;287(8):6025-34.
17 Gene expression profile of multiple myeloma cell line treated by realgar. J Exp Clin Cancer Res. 2006 Jun;25(2):243-9.
18 Gene expression profiles of human promyelocytic leukemia cell lines exposed to volatile organic compounds. Toxicology. 2010 May 27;271(3):122-30.
19 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
20 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
21 A low-molecular-weight compound K7174 represses hepcidin: possible therapeutic strategy against anemia of chronic disease. PLoS One. 2013 Sep 27;8(9):e75568.
22 Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J Appl Toxicol. 2016 May;36(5):649-58.
23 Altering cancer transcriptomes using epigenomic inhibitors. Epigenetics Chromatin. 2015 Feb 24;8:9.
24 Transcriptomic Analysis of Human Primary Bronchial Epithelial Cells after Chloropicrin Treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
25 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
26 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
27 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134.
28 Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids. Food Chem Toxicol. 2020 Oct;144:111643.
29 An assessment of serum-dependent impacts on intracellular accumulation and genomic response of per- and polyfluoroalkyl substances in a placental trophoblast model. Environ Toxicol. 2020 Dec;35(12):1395-1405.
30 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
31 Combined effects of arsenic and palmitic acid on oxidative stress and lipid metabolism disorder in human hepatoma HepG2 cells. Sci Total Environ. 2021 May 15;769:144849.
32 Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 1170).

If you find any error in data or bug in web service, please kindly report it to Dr. Yin and Dr. Li.