General Information of Drug Transporter (DT)
DT ID DTD0503 Transporter Info
Gene Name SLCO4C1
Transporter Name Organic anion transporting polypeptide 4C1
Gene ID
353189
UniProt ID
Q6ZQN7
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Approved Drug

  Clarithromycin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Clarithromycin inhibits the activity of SLCO4C1 (IC50 = 200 microM) [1]

  Crizotinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Crizotinib inhibits the activity of SLCO4C1 (IC50 = 24 microM) [1]

  Fluvastatin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Fluvastatin inhibits the activity of SLCO4C1 (IC50 = 41 microM) [1]

  Levofloxacin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Levofloxacin inhibits the activity of SLCO4C1 (IC50 = 420 microM) [1]

  Nicardipine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Nicardipine inhibits the activity of SLCO4C1 (IC50 = 51 microM) [1]

  Ritonavir

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Ritonavir inhibits the activity of SLCO4C1 (IC50 = 8.5 microM) [1]

  Saquinavir

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Saquinavir inhibits the activity of SLCO4C1 (IC50 = 4.3 microM) [1]

  Spironolactone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Spironolactone inhibits the activity of SLCO4C1 (IC50 = 53 microM) [1]

  Verapamil

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Verapamil inhibits the activity of SLCO4C1 (IC50 = 110 microM) [1]

  Amiodarone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Amiodarone increases the expression of SLCO4C1 [2]

  Atenolol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Atenolol increases the expression of SLCO4C1 [3]

  Isotretinoin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Isotretinoin inhibits the expression of SLCO4C1 [4]

  Estradiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Estradiol increases the expression of SLCO4C1 [5]

  Azathioprine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Azathioprine inhibits the expression of SLCO4C1 [6]

  Vincristine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Vincristine inhibits the expression of SLCO4C1 [7]

  Zoledronic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Zoledronic Acid inhibits the expression of SLCO4C1 [8]

  Methamphetamine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Methamphetamine increases the expression of SLCO4C1 [9]

  Doxorubicin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Doxorubicin affects the expression of SLCO4C1 [10]

  Belinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Belinostat increases the expression of SLCO4C1 [11]

  Panobinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Panobinostat increases the expression of SLCO4C1 [11]

  Vorinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Vorinostat increases the expression of SLCO4C1 [11]

  Rifampin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Rifampin increases the expression of SLCO4C1 [12]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Sunitinib increases the expression of SLCO4C1 [13]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Cyclosporine inhibits the expression of SLCO4C1 [14]

  Tretinoin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Tretinoin increases the expression of SLCO4C1 [15]

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Valproic Acid increases the expression of SLCO4C1 [16]

  Digoxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Digoxin modulates the activity of SLCO4C1 [17]

Drug Marketed but not Approved by US FDA

  Demecolcine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Demecolcine inhibits the expression of SLCO4C1 [7]

Drug in Phase 3 Trial

  Sulforafan

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Sulforafan increases the expression of SLCO4C1 [23]

Drug in Phase 2 Trial

  MS-275

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

MS-275 increases the expression of SLCO4C1 [11]

Drug in Phase 1 Trial

  Quercetin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Quercetin inhibits the expression of SLCO4C1 [18]

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Sodium arsenite increases the expression of SLCO4C1 [19]

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Trichostatin A increases the expression of SLCO4C1 [11]

Investigative Drug

  Phenylmercuric Acetate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Phenylmercuric Acetate increases the expression of SLCO4C1 [11]

Drug Withdrawn

  Quinidine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Quinidine inhibits the activity of SLCO4C1 (IC50 = 100 microM) [1]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Tobacco Smoke Pollution inhibits the expression of SLCO4C1 [29]

Environmental toxicant

  Polychlorinated dibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Polychlorinated dibenzodioxin inhibits the expression of SLCO4C1 [27]

Mycotoxins

  Aflatoxin B1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Aflatoxin B1 inhibits the expression of SLCO4C1 [28]

Acute Toxic Substance

  Formaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Formaldehyde inhibits the expression of SLCO4C1 [7]

Carcinogen

  Ethyl Methanesulfonate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Ethyl Methanesulfonate inhibits the expression of SLCO4C1 [7]

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Benzo(a)pyrene inhibits the expression of SLCO4C1 [26]

Pesticide/Insecticide

  Dicrotophos

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Dicrotophos inhibits the expression of SLCO4C1 [25]

Health and Environmental Toxicant

  1-methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

1-methyl-4-phenylpyridinium increases the expression of SLCO4C1 [20]

  Butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Butyraldehyde increases the expression of SLCO4C1 [21]

  tris(1,3-dichloro-2-propyl)phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

tris(1,3-dichloro-2-propyl)phosphate affects the expression of SLCO4C1 [22]

  Perfluorooctane sulfonic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation 1

Perfluorooctane sulfonic acid inhibits the expression of SLCO4C1 [24]
References
1 Potential Drug Interactions Mediated by Renal Organic Anion Transporter OATP4C1. J Pharmacol Exp Ther. 2017 Aug;362(2):271-277.
2 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
3 Change in mRNA Expression after Atenolol, a Beta-adrenergic Receptor Antagonist and Association with Pharmacological Response. Arch Drug Inf. 2009 Sep;2(3):41-50.
4 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
5 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
6 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
7 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
8 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
9 Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes. PLoS One. 2014 Oct 7;9(10):e109603.
10 Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells. Toxicology. 2015 Feb 3;328:102-11.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol. 2016 Apr 26;7:111.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
14 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
15 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423.
16 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
17 Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 1227).
18 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
19 Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics. 2012 Aug;4(8):784-93.
20 Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis. 2014 May 8;5(5):e1222.
21 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
22 Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J Appl Toxicol. 2016 May;36(5):649-58.
23 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
24 The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol. 2016 Aug 1;304:18-29.
25 Molecular mechanisms of discrotophos-induced toxicity in HepG2 cells: The role of CSA in oxidative stress. Food Chem Toxicol. 2017 May;103:253-260.
26 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297.
27 The cutaneous lesions of dioxin exposure: lessons from the poisoning of Victor Yushchenko. Toxicol Sci. 2012 Jan;125(1):310-7.
28 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
29 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.

If you find any error in data or bug in web service, please kindly report it to Dr. Yin and Dr. Li.